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An algorithm is suggested for the calculation of the reaction distance as the minimal number 
of elementary steps of reorganization of valence electrons during a reaction. The basis for the 
formulation of this algorithm is the synthon isomerization graph (SR-graph). Chemical examples 
of application of the algorithm are given. 

Previous papers 1 ,2 have dealt with the matrix and graph models of the synthon and 
its conversions, and the concept of the reaction distance (RD) between two synthons 
has been introduced 1 • The reaction distance is defined as the smallest number of 
elementary steps of reorganization of electrons3 (ESRE) during a chemical reaction, 
or formally, as the graph distance in the Gp1S(A) graph. In the model treated, RD 
along with the concept of the valence state of the atom plays the major role. Among 
the reasons for this is the fact that the model is intended particularly for chemical 
synthesis planning, where the following two questions are of crucial importance: 
what can be prepared from a given substance, and from which substance can a pro
duct of interest be synthesized. In either case, the substance sought will apparently 
lie "near" the given substance, spoken in reaction distance terms. 

In this paper, an algorithm is formulated for the calculation of RD in the synthon 
reaction graph (SR-graph). This algorithm is based on the previously found relations 
for the calculation of the distance of two valence states of an atom and two states 
of the atomic vector4 •S • 

Since RD is the smallest number of elementary steps of reorganization of valence 
electrons, the concept of elementary SR-graphs will be first introduced. 

THEORETICAL 

Elementary SR-Graphs 

Any process of reorganization of valence electrons during a chemical reaction can 
be decomposed in the model into elementary steps, for which the matrix operators 

• Part XIII in the series Mathematical Model of Organic Chemistry; Part XII: Collect. 
Czech. Chern. Cornrnun. 53, 3108 (1988). 
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at, P, ,,/, ~ have been introduced1 • Graph analogues ofthese operators are the so-called 
elementary SR-graphs, given in Table I. Each elementary SR-graph is the SR-graph 
of a reaction where the reaction distance between the starting and final synthons 
is unity. Elementary SR-graphs along with the global SR-graph form the starting 
structure for the algorithm for the calculation of the reaction distance, given below. 

Reaction Distance 

The reaction distance RD between two isomeric synthons S{A) and S'{A) has been 
defined as the graph distance between the corresponding vertices in the GF1S(A) graphs. 
The algorithm set up for the calculation of this quantity (the GRD algorithm) starts 
from the graph model of the synthon and from the fact that any SR-graph GR can 
be decomposed into a finite number of elementary SR-graphs G1 , G2 , ••• , Gn : 

(I) 

If GR is the SR-graph of the S(A) -+ S'{A) transformation, then the lowest integer n 
satisfying Eq. (I) is equal to the reaction distance RD(S{A), S'{A». The operation 
of summation (+) of SR-graphs is defined (similarly as in ref.6 ) as follows. Be 
GR = (VR,ER,LR,I/I,OJ,{-1,1}) and G~ = (V~,Ek,I.:R,I/I',OJ',{-1,1}) two SR
graphs, then 

G" = GR + Gk = {V;, Ei, L~, 1/1", OJ", {-1, 1}), (2) 

where V; = VR U V~ (for this union, any two virtual vertices are construed as 
different), Ei = {Ei u Ek+) , (E; u E~-), L~ = (L~ u I.:i)' (L:R u L~-), I/I"(e) = 
= I/I(e) for e E ER and 1/1" = I/I'(e) for e E E~, OJ"{I) = w(1) for 1 E LR and OJ"(I) = 
= OJ'{I) for 1 E I.:R• Ei and L~ are {e E ERI I/I{e) = I} and {I E LR I w(1) = I} sets, 
respectively, E;, E~+, E~- , L:R, I.:; and I.:R- are defined analogously. and operation, 
denotes the symmetrical difference of sets (Le. ,A' B = {x I (x E A A X ¢ B) A 

A (x¢A A xEB)}). 
Similarly as in ref.2 , the symbol 

will be used for two-electron loops and the symbol 

for one-electron loops. 
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TABLE I 

Elementary SR-graphs and IX, fl, 7, d operators (k = 1,2, 3; • nonvirtual vertices, 0 virtual 
vertices) 

Operator 
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Example 1. Consider a reaction associated with the 

I _ 
-C-XI-

I -
+ I~-

transformation. The SR-graph of this transformation has the form 

o + • • + 0 

C x 

One of the possible decompositions, 

models the El mechanism and also informs us that the RD between the starting and 
final synthons equals 3. 

Now, have two isomeric synthons, SeA) and S'CA); GR be the SR-graph of the 
SeA) ~ S'CA) transformation. The reaction distance with respect to the SR-graph GR , 

denoted RD( GR), will be identified with the reaction distance of the two synthons, 

RD(GR ) = RD(S(A), S'(A». (3) 

CRD Algorithm for the Calculation of the Reaction Distance 

From the graph point of view, the calculation of RD is a problem of the edge coverage 
of the GR graph by elementary SR-graphs, which in the general form is an NP
complete problem 7 • The algorithm suggested operates in two stages. In the first 
(steps 1- 17) it seeks for special subgraphs of the G R graph where the coverage can 
be accomplished readily, in the second, the remaining part of GRis covered combi
natorially and the alternative with the smallest number of elementary SR-graphs 
is picked out. The input is the GR graph, the output is RD (GR). The following con
ventions are adhered to. 

Describing the algorithm, the V, E, L sets in the definition of the SR-graph will 
be indexed or otherwise labelled similarly as the initi.al GR graph. Hence, denoting 
a graph G~ implies that G~ = (V~, E~, LR , ifl', ro', {-1, 1}). An 8-graph will be 
a graph that after omitting isolated vertices is a graph containing an Euler path6 • 

We say that an SR-graph GR satisfies condition (*) if 

(i) it contains no loop, 

(ii) it is an a-graph, 
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(iii) for each vertex, the absolute value of the sum of evaluations of all edges incident 
with this vertex is lower than 2, and 

(jv) the sum of evaluations of all edges is equal to O. 

The operation - between SR graphs will be defined as follows. Be G1, G2 SR
graphs 

G1 = (V1, E1, £1, "'1, ru1, { -1, 1}) 

G2 = (V2, E2, L2, ",2, ru2, { -1, I}) . 

Then the difference G1- G2 is the graph 

G1 - G2 = (V, E, L, "', ru, {-1, 1}), 

where V = V1, E = E1 - E2, and L = £1 - L2, the sign - denoting difference 
of sets, and", and ru are restrictions of ",1 to E and ru1 to L, respectively. 

The CRD Algorithm 

1. D = O. 

2. Decompose graph GR = G1 u G2 u G3 so that 

- G1 is the subgraph of graph GR containing all vertices that carry at least one 
loop and all edges incident with these vertices, 

- G2 is the subgraph of graph GR containing the virtual vertices of graph GR 

and those edges incident with them that are not contained in G1, and 
- G3 contains all the remaining edges of graph GR and vertices incident with 

them. 

3. If graph G1 contains no edge, go to step 8. Else, decompose graph G1 into G1 + 

so that graph G1 + contain only edges of graph G1 with positive evaluation and 
loops with negative evaluation and graph G1- contain edges with negative 
evaluation and loops with positive evaluation. 

4. If in G1 + there exists a subgraph G' of the form 

that in G1 + cannot be completed to a subgraph 

put D = D + 1, G1 + = G1 + - G', and repeat step; else continue. 
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5. If in Gl- there exists a subgraph G' of the form 

that in Gl - cannot be completed to a subgraph 

put D = D + 1, Gl- = Gl- - .J', and repeat step 5; else continue. 

6. In graph Gl + choose a vertex whose degree is 1 and which is incident with at 
least one two-electron loop. If such a vertex exists, cancel the two-electron loop 
at it and the single edge incident with it, put D = D + 1 and return to step 6, 
else continue. 

7. In graph Gl- choose a vertex whose degree is 1 and which is incident with at 
least one two-electron loop. If such a vertex exists, cancel the two-electron loop 
at it and the single edge incident with it, put D = D + 1 and return to step 7, 
else continue. 

8. Put G' = Gl + u Gl - u G3. Decompose G' = Gl u G3' so that Gl' and G3' 
have the same properties as Gl and G3 in step 2. 

9. Decompose graph G3' into components, whose number is I. Put G' = Gl u G2, 
J = o. 

10. J = J + 1; if J > I go to step 16, else denote the J-th component of graph G3' 
as G'. Put Nl = IVn VI'I, N2 = IVn V21. 

11. If (N1 > 1) " [(Nl + N2) > 2J " [N2 . (Nl + N2) = 2J go to step 10, else 
continue. 

12. If G satisfies condition (*) put G3' = G3' - G, D = D + lEI, go to step 10; 
else if Nl + N2 = 0 continue step 13 else go to step 14. 

13. If there exists h E E such that graph G - {h} satisfies condition (*), put G = 

= G - {h}, D = D + lEI, G3 = (G3' - G) u {h}. Go to step 10. 

14. If Nl = 1 go to step 15. If in graph G2 there exists an edge h incident with 
some vertex of graph G so that graph G u {h} satisfies condition (*), put G3' = 

= G3' - G, G2 = G2 - {h}, D = D + lEI + 1. Go to step 10. 

15. Denote k the single vertex that graphs Gl' and G have in common. If the degree 
of k in G is greater than 1 go to step 10. Else denote the single edge in graph G 
incident with k as h. Put G = G - {h}. If now G satisfies condition (*), put 
G3' = G3' - G, D = D + lEI. Go to step 10. 
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16. In graph G', omit each edge h = {v1, v2} having the following properties: 

(i) v2 E V2 
(ii) v1 is incident with no loop 

3125 

(iii) no edge of the graph G' u G3' with evaluation opposite to that of edge h 
is incident with vertex vI. 

Denote the number of such edges N. Put D = D + N. 

17. Put G' = G' u G3', D = D + IE'I. 
18. Replace each edge or two or three parallel edges {v1, v2} in graph G' successively 

with some of the graphs in the following scheme so that all combinations are 
exhausted: 

, ........ , (-) I - I 
I , 
\ I \/ \I 

• -----. 1\ ¥ or • e 

v1 V2 V1 V2 V1 V2 V1 V2 

K V 
,""'\ 

V V I - I - \ , 
\ , 

~ " ~ e or II or 
1\ , \ , \ 1_' 

v1 v2 v2 \,jv1 v2 v1 .v2 

r:") V or ~V2 
\ , 
\ / 
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I \ 

I \ 

(-\ 
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-----. ! or~ 
f " \ 

K V I - I 
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\ , 
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\ I 
e \I or , \ , \ 

I \ I _ I 
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\:JV1 I..:. vi v1 - v2 
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\-) ~- ~-or" ore 

V1 - V2 V1 - v2 

Replace edges evaluated + following the same scheme, only the evaluation of 
loops in it will be +. A graph containing no edge is always obtained. There are 
3111 .5"2.7"3 ways for this treatment, where n1, n2 and n3 are the numbers of 
single edges, parallel pairs of edges and parallel groups of three edges, respectively. 
For each combination, calculate the number N as 

where A + is the number of two-electron loops with evaluation + in G' - G2, 
A - is the number of two-electron loops with evaluation - in G' - G 2, B+ and B
are the numbers of one-electron loops with evaluation + and -, respectively, 
inG' - G2,C1 = min {A+,A-},C2 = min {B+,B-},E1 = min {F(A+ - A-), 
F(B- - B+) + 2}, E2 = min {F(A- - A+), F(B+ - B-) + 2}, F(x) = x for 
x ~ 0, F(x) = 0 for x < o. 

19. Put RD = D + Nmin, where Nmin is the lowest N from step 18. The RD 
obtained is the reaction distance of the synthons studied. 

20. End of algorithm. 

For proving correctness of the algorithm it would be necessary to demonstrate 
that the distance found by it is really the shortest, and moreover, that a path having 
the length ofthe calculated distance exists. The second part of the proposition follows 
implicit from the phenomenological assumption made in ref.4 , according to which 
graphs of conversion of valence states of atoms are continuous. For proving the first 
part of the proposition it is necessary to demonstrate that arrangements of the reaction 
graph made by the algorithm (as far as step 18) are the most economical. Those edges 
of the reaction graph not affected by the treatment then are processed combinatorially 
and out of the possibilities, the minimum is picked out. No exact proof of correctness 
of the algorithm has been made but no formal discrepancies were observed in any of 
the particular cases of chemical systems treated. 

Example 2. Assume that a reaction leading from the initial to the final states of 
the synthon is modelled by the reaction graph 

• • CQ \-1 fL - + - + • • 
1 2 3 5 6 1 
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This graph will be treated in the steps of the CRD algorithm as follows: 

1. 0= 0 

,-, ,-, 
- t-J + \-} - + + 

\ / \ / 
2. G1: 

2 3 4 5 6 

... -, ... -, 
~-) + \"-) + 
\ I \ I 

3. G1·: ~ --. 
3 4 5 6 

+ 

4. G1+: -- i 0= 1 
5 6 

5. No change 

6. No change 

7. G", -- . 0=2 
2 3 

+ 
8. G': --- • 

2 3 5 6 

+ 
G3': ---2 3 5 6 

9. G': o----e 

2 

10. J= 1 . Nl=O, N2=1 

1t No change 

12. No change 

14. No change 

10. J=2, N1 =0 , N2=0 

1" No changtt' 
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• 
7 

G2: o----e 

2 
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2 3 

G1': {.e1 

G3: --
6 7 

4 5 

3127 



3128 Kota: 

12. G3': -- ; D = D + 2 = 4 
2 3 

10. J= 3 

16. G': (HI. D = D + 1 = 5 

17. G': -- • D = D + 1 = 6 
2 3 

18. 
2 3 2 

• 

3 

v . 
2 3 

2 3 

19. RD = D + Nmill. = D + 1 = 7 

Examples of pairs of isomeric synthons along with their RD obtained by the CRD 
algorithm are given in Table II. The algorithm was implemented in FORTRAN 
on a PDP 11/34 computer and in PL/1 on an EC 1033 computers. Experience showed 
that even in the most unfavourable cases the computation times for actual chemical 
systems (RD < 13) are reasonably low (less than 5 s CPU on the EC 1033 for 
RD = 12). 

CONCLUSIONS 

The reaction distance was given attention for several reasons. First, an alternative 
to the chemical distance9 CD, it models the chemical reaction considerably better 
from the kinetic point of view. From this standpoint, RD appears to be a necessary 
auxiliary tool in building up deductive models in reaction mechanism suggestions. 
Second, as mentioned, the model is designed to serve for chemical synthesis purposes, 
where substances "near to" the given product or starting substance will be sought 
as potential precursors for retrosynthesis or successors for forward synthesis. 
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TABLE II 

Pairs of isomeric synthons SeA) S'(A) and their RD (steps that do not concern the skeleton 
shown are not included) 

SeA) S'(A) RD Comment 

® + Na-NHz ~~, NaH 

N 

4 Chichibabin reaction 

# \/ () (/ 

i + Ii 
~'\ C 

/\ 

6 Diels-Alder reaction 

" - -C=N-O-H 
/ -

(O=C-N-H 
I I 

8 Beckmann rearrangement 

I 

~ I ? 

R-~-C-Rz i=,--C -C-R-
I + I \I 

r,'-c,-_ c RLC C-R3 

.I "1;3 
\-1 

N-H N 
I I 

H 

12 Knorr sythesis 

R' R' 

RO--CO -t= COOR ROC~XCOOR -t- I 

-c-
I + I 21 Hantsch synthesis 
C= C= 

/ "-- "R3 R2 N- R2 t-, R3 
/' 

An interesting problem, mathematical by nature but chemical in effect, is that 
associated with the principle of minimal chemical distance (PMCDYo. This problem 
is not solved by the synthon model because PMCD is a problem of indexing rather 
than distance, and so the principle of minimal reaction distance (PMRD) remains 
in general the same problem as PMCD. Anyway, RD will be an important heuristics 
in the computer planning of chemical syntheses. 

Thanks are due to Dr L. Matyska (Institute of Pure Chemicals. Lachema. Brno) for CRD 
algorithm implementation and testing on an BC 1033 computer in PL!1 language. 
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